
Pseudocode specification suitable for National 5 1

Pseudocode for National 5 Computing
Science Question Papers

1. Overview
Being able to reason about code is increasingly being seen as a crucial part of
learning to program. For example, if you can’t explain in precise detail what a
fragment of code does, you can’t debug. If you can’t explain the code you’ve just
written to someone else, how can you justify any of the decisions you made in
creating it, and then demonstrate any level of understanding?

To assess candidates’ ability to reason about programs, programs must be
presented in assessment questions. This document contains a specification for a
pseudocode language designed for setting such questions, developed collaboratively
by Heriot Watt University and the University of Glasgow. It is suitable for use in
schools and FE/HE institutions. It enables examiners, assessors and candidates to
work to one well-defined pseudocode notation.

The use of pseudocode supports SQA’s decision to allow centres to use the
programming language of their choice for instruction, as long as assessors ensure
that candidates have mapped their understanding from the language of instruction
across to the pseudocode. This focus on concepts that are shared between
programming languages is potentially a major lever in deepening understanding of
computation in general.

Although the idea of a clearly-defined pseudocode may seem daunting, it is not in
fact so different from the pseudocode that has been used for years in SQA exam
papers. It has simply been regularised, so that current and new assessors, exam-
setters, and candidates will all be working to the same definition.

This document presents a reduced specification suitable for the SQA National 5
Course. Documents providing the full specification, and giving more extensive
examples of use, will be available in due course.

In reviewing this specification, bear in mind its primary purpose:

 Where candidates may be instructed using one of a range of languages, a
clearly-defined pseudocode should enable code to be presented to them
under closed assessment conditions such that they can reason about it.

 Candidates are not expected to write code in the clearly-defined
pseudocode, given that examiners should be able to mark solutions written in
a range of languages commonly used for teaching — and so candidates can
use the language of their choice.

Pseudocode specification suitable for National 5 2

Note that assessors and candidates may choose to use this clearly-defined
pseudocode as a tool to support program design, but this is not its primary
purpose.

The aim in the rest of the document is to present the pseudocode principally via a
small number of examples. In reading through the examples and specification,
attachment to particular constructs or to “my favourite construct in language X”
should be avoided — it is the concepts that are the major focus.

2. Introducing the pseudocode by example
The following typical programming examples show that solutions in our specified
pseudocode do not differ markedly from those in any pseudocode notation.

The first example is for the problem:

Read in a number representing a temperature in degrees Celsius and write it
out as a value in degrees Fahrenheit. If the Celsius value is C, then the
Fahrenheit value, F, is calculated as follows: F = (9 / 5) * C + 32.

Using our pseudocode, this would be written as follows:

 RECEIVE c FROM KEYBOARD
 SET f TO (9 / 5) * c + 32
 SEND f TO DISPLAY

An immediate observation is that the keywords are written in CAPITALS. In any
representation of programming language code, it is useful for the reader to
distinguish easily between the language’s keywords and other names created by the
user. Using bold and underline is one technique. Capitalisation is another, and it has
been chosen to facilitate keyword highlighting when writing examples on paper or on
the board, where emboldening is not practical, and underlining can get messy.

Here’s a slightly more complex problem:

 Read in 10 numbers and write out the average of those numbers.

This would be represented as follows:

 SET total TO 0
 SET count TO 0

 WHILE count < 10 DO
 RECEIVE nextInput FROM KEYBOARD
 SET total TO total + nextInput
 SET count TO count + 1
 END WHILE

 SEND total / 10 TO DISPLAY

Here’s a problem that uses an array:

Store and process the race times of the finalists in a 100 m sprint so that the
winner’s time is output.

The solution would look like this:

Pseudocode specification suitable for National 5 3

 SET allTimes TO [10.23, 10.1, 10.29, 9.9, 10.12, 10.34, 9.99, 9.58]
 SET fastestTime TO allTimes [0]
 FOR EACH time FROM allTimes DO
 IF fastestTime < time THEN
 SET fastestTime TO time
 END IF
 END FOR EACH
 SEND “The winner’s time was:” & STRING(fastestTime)] TO DISPLAY

The only possibly slightly new aspect to this code is the FOR EACH iterator, which
iterates over anything that is a collection of values, like an array. It is therefore a
generalisation of the kind of FOR loop found in most languages, which can iterate
over a sequence of integers only. Increasingly, modern programming languages
have the FOR EACH style of iterator.

The final example shows how code can be presented in relation to a graphical
environment with a library of graphical procedures/functions/subroutines.

We are working in a graphical context and already have an array of sprites
(graphical objects) declared as follows, using some sprites we’ve already
created:

 SET sprites TO [frog, cow, kangaroo, rhinoceros]

 The following subroutines are defined to work on sprites:

 getColour: returns the colour of the sprite parameter as a string

 move: moves the sprite in the direction and distance specified

 Write code to move those objects in the sprites array that are red up by a
distance 0.5.

The solution to this problem would be:

 FOR EACH sprite FROM sprites DO
 IF getColour(sprite) = "red" THEN
 move(sprite, "up", 0.5)
 END IF
 END FOR EACH

Note that in the problem specification, some of the detail is left out. For example, it is
not clear exactly how the frog, cow, etc., are created. But this shouldn’t matter. It is
expected that the candidates will have had experience of this kind of concept using
the concrete languages with which they are learning to program. Hence the concept
of graphical objects, and of subprograms that operate over them, shouldn’t be new.

In summary, the purpose here is to show that solutions to problems presented using
our clearly-defined pseudocode do not look radically different to other pseudocodes
used for assessment. The aim here is simply to ensure that everyone is using the
same pseudocode.

The full specification appropriate for National 5, attached to this document as an
appendix, may look lengthy, but that is what is required if any language is to be
specified accurately — and is a testament to how much anyone learning a

Pseudocode specification suitable for National 5 4

programming language has implicitly picked up, even if they couldn’t articulate all the
pieces!

Once again, remember that candidates, or more particularly, examinees, are never
expected to write this pseudocode, only to be able to read and understand it.

Pseudocode specification suitable for National 5 5

Appendix: The specification suitable for
National 5

1. Types
Types are a major modelling tool for the development of programs, enabling the
structure of the data manipulated to be clearly specified. The type system of a
language typically contains both base types, such as integers and Booleans, and
structured types, such as arrays and records.

The pseudocode language is typed — that is to say, all values in the language have
a type associated with them — but types are not exposed if obvious from context.

The base types and their values are:

 INTEGER : -big ... + big – where big is arbitrary

 REAL : -big.small ... + big.small – where big and small are arbitrary

 BOOLEAN : true & false

 CHARACTER : ‘character’

At National 5, the structured types are:

 ARRAY : finite length sequence of same type

 STRING : ARRAY of CHARACTER

Note that STRING is really just a specialisation of ARRAY.

Finite length structured type values may be denoted explicitly as:

 [value1, value2, ...] for ARRAY

 "character character ..." for STRING

For example,

 [true, false, true, true] is an ARRAY holding four BOOLEANs

 "Hello, this is a message" is a STRING

2. System entities
System entities include:

 DISPLAY : in effect the default WINDOW or console out.

 KEYBOARD : in effect the default TEXTBOX or console in.

3. Identifiers
Identifiers are the usual sequences of letters and digits and “_”, starting with a letter.
Examples are:

 myValue My_Value counter2

4. Commands
Commands include:

 variable introduction and assignment

 command sequences

 conditions

 repetitions and iterations

 subprogram calls

Pseudocode specification suitable for National 5 6

4.1 Variable introduction and assignment
There are numerous ways in which variables can be modelled. Considerations are,
at the least: do variables need to be explicitly introduced before they can be used;
must they always have an initialising value; should the type of the variable be
explicitly provided (assuming types are used at all!)?

Variables are introduced implicitly by first use on the left of an assignment, and the
type of the variable is inferred from the initialising value:

 SET id TO value
o introduces id of same type as, and initialised to, value
o includes initialisation of structured types

While this may seem less rigorous than formally requiring a separate declaration,
note that this pseudocode language is primarily to be used for the presentation of
program fragments in exam questions, and details of variables can be outlined in the
question preamble.

Examples are

 SET counter TO 0 creates a counter variable, initialised to zero

 SET a TO b creates variable a, initialised to the value held by
 variable b

 SET myVals TO [1, 2, 3] creates myVals initialised to an array

Assignment looks identical to variable introduction, but note the typing requirement.

 SET id TO expression
o Change the value associated with id to that of expression.
o The type of expression must match the type already associated with

id.

4.2 Command sequences
The concept of a sequence of commands is one of the major control flow structures
in any language. These are also known as ‘blocks’ in many languages.

In this pseudocode, commands one line after another are implicitly in top to bottom
sequence. Command sequences are made explicit on one line with “;” as a
separator, not a terminator.

The extent of a command sequence is implicitly defined, when it is the outermost
level of a program, by the beginning and end of the program code; it is explicitly
defined everywhere else, by the particular command structure containing it. Where
command appears in command definitions below, this stands for a single command
or a command sequence.

4.3 Condition
Conditional commands have the form:

 IF expression THEN command END IF

 IF expression THEN command ELSE command END IF

An example of a simple one-armed conditional is:

IF a > 3 THEN
 SEND “more than three” TO DISPLAY

END IF

Pseudocode specification suitable for National 5 7

4.4 Repetition
Repetition may be specified to take place a fixed number of times, or it may continue
until a condition is reached.

4.4.1 Unbounded/Conditional repetition
Conditional repetition can place the decision on whether to continue repeating at the
start or end of the command sequence to be repeated. These commands are:

 WHILE expression DO command END WHILE

 REPEAT command UNTIL expression

4.4.2 Bounded/Fixed repetition
These take two forms. In the first, code is repeated a specified number of times:

 REPEAT expression TIMES command END REPEAT

Note that the ubiquitous FOR loop is technically an iterator, the second form. The
terms repetition and iteration are often used interchangeably. However, technically,
one iterates over something. That is, we are using iteration when we examine/
process items in a structured data value, one by one.

The FOR loop is the most familiar iterator — it effectively creates a list of integers
from the lower to upper bounds specified, using a step if available, and then makes
each element of that list available to the code body by placing it in the loop variable.
The FOREACH loop is the more general iterator, operating over any structured type
value.

In Haggis, iteration commands have the form:

 FOR id FROM expr TO expr DO command END FOR

 FOR id FROM expr TO expr STEP expr DO command END FOR

 FOR EACH id FROM expression DO command END FOR EACH
o expression returns a structured value - an ARRAY or STRING
o the order of value extraction from the structured value is first to last

As an example of the FOREACH construct:

 SET myArray TO ["The","sun","is","shining","today"]
 SET sentence TO ""

 FOREACH word FROM myArray DO
 SET sentence TO sentence & word & " "
 END FOREACH

4.5 Subprograms
National 5 requires only that candidates can use libraries of subprograms, with and
without parameters. The subprograms can return values. It is expected that the
specification of any subprograms used in questions will be specified in the question
preamble. This enables a wide range of contexts to be used in question setting.

Subprograms may be called as:

 id(...) where … is a comma separated list of arguments, possibly empty

For example:

 SET t TO currentTimeIn("New York")

Pseudocode specification suitable for National 5 8

makes use of a subprogram currentTimeIn, taking a city as parameter, and returning
the current time in that city.

5. Operations
The usual infix and prefix operations on INTEGER and REAL are provided:

 minus: - unary

 add: +

 subtract: -

 multiply: *

 divide: /

 exponent: ^

The binary comparison operators aim to model their mathematics counterparts:

 equality: =

 inequality: ≠

 less than: <

 less than or equal: <=

 greater than: >

 greater than or equal: >=

Comparisons apply to all finite types, where equality is defined to be element by
element.

Order comparisons on structured types imply alphabetic order or equivalent.

The logical operators are:

 conjunction: AND

 disjunction: OR

 negation: NOT

Expressions are bracketed by (...).

The structured types may be concatenated using the & operator, and their length
found using the standard subprogram length. For example:

 SET myLength TO length("Quintin" & "Cutts")

Selecting items from structured types:

 Both ARRAY and STRING types may be accessed by:
o id[index]

 Indexing starts from zero.

6. Elision
Since this is a pseudocode, and the specification of some parts of a program may be
left for further refinement,

 <text>

may be used instead of any command to express such an item.

Pseudocode specification suitable for National 5 9

7. I/O
For National 5, simple abstractions are given for screen and keyboard based I/O

To input next value from keyboard:

RECEIVE id FROM (type) KEYBOARD

For example

RECEIVE s1 FROM (STRING) KEYBOARD takes all characters on
 the line

RECEIVE s2 FROM (INTEGER) KEYBOARD jumps whitespace, reads
 an integer

RECEIVE s3 FROM (CHARACTER) KEYBOARD reads a single character

To append output value to display:

SEND expression TO DISPLAY

For example

 SEND "\n" TO DISPLAY takes the output to a new line

 SEND 23 TO DISPLAY prints the integer 23

 SEND ["h ",1] TO DISPLAY prints out "h 1" without the quote marks

8. Standard library
As we gain experience with this new approach, we will systematically develop a
standard library.

At present the only entry in the library is length, a subprogram taking a value of
ARRAY or STRING returning its length.

